I Классификация микропроцессоров
II Архитектура микропроцессоров
III Организация ввода/вывода в микропроцессорной системе
IV Память микропроцессорной системы
V Проектирование микропроцессорных систем



Этапы проектирования микропроцессорных систем

Микропроцессорные системы по своей сложности, требованиям и функциям могут значительно отличаться надежностными параметрами, объемом программных средств, быть однопроцессорными и многопроцессорными, построенными на одном типе микропроцессорного набора или нескольких, и т.д. В связи с этим процесс проектирования может видоизменяться в зависимости от требований, предъявляемых к системам. Например, процесс проектирования МПС, отличающихся одна от другой содержанием ПЗУ, будет состоять из разработки программ и изготовления ПЗУ.

При проектировании многопроцессорных микропроцессорных систем, содержащих несколько типов микропроцессорных наборов, необходимо решать вопросы организации памяти, взаимодействия с процессорами, организации обмена между устройствами системы и внешней средой, согласования функционирования устройств, имеющих различную скорость работы, и т. д. Ниже приведена примерная последовательность этапов, типичных для создания микропроцессорной системы:
1. Формализация требований к системе.
2. Разработка структуры и архитектуры системы.
3. Разработка и изготовление аппаратных средств и программного обеспечения системы.
4. Комплексная отладка и приемосдаточные испытания.

Этап 1. На этом этапе составляются внешние спецификации, перечисляются функции системы, формализуется техническое задание (ТЗ) на систему, формально излагаются замыслы разработчика в официальной документации.

Этап 2. На данном этапе определяются функции отдельных устройств и программных средств, выбираются микропроцессорные наборы, на базе которых будет реализована система, определяются взаимодействие между аппаратными и программными средствами, временные характеристики отдельных устройств и программ.

Этап 3. После определения функций, реализуемых аппаратурой, и функций, реализуемых программами, схемотехники и программисты одновременно приступают к разработке и изготовлению соответственно опытного образца и программных средств. Разработка и изготовление аппаратуры состоят из разработки структурных и принципиальных схем, изготовления прототипа, автономной отладки.
Разработка программ состоит из разработки алгоритмов; написания текста исходных программ; трансляции исходных программ в объектные программы; автономной отладки.

Этап 4. см. Комплексная отладка.

На каждом этапе проектирования МПС людьми могут быть внесены неисправности и приняты неверные проектные решения. Кроме того, в аппаратуре могут возникнуть дефекты.



Источники ошибок

Рассмотрим источники ошибок на первых трех этапах проектирования.

Этап 1. На этом этапе источниками ошибок могут быть: логическая несогласованность требований, упущения, неточности алгоритма.

Этап 2. На данном этапе источниками ошибок могут быть: упущения функций, несогласованность протокола взаимодействия аппаратуры и программ, неверный выбор микропроцессорных наборов, неточности алгоритмов, неверная интерпретация технических требований, упущение некоторых информационных потоков.

Этап 3. На этом этапе источниками ошибок могут быть: при разработке аппаратуры - упущения некоторых функций, неверная интерпретация технических требований, недоработка в схемах синхронизации, нарушение правил проектирования; при изготовлении прототипа - неисправности комплектующих изделий, неисправности монтажа и сборки; при разработке программных средств - упущения некоторых функций технического задания, неточности в алгоритмах, неточности кодирования.

Каждый из перечисленных источников ошибки может породить большое число субъективных или физических неисправностей, которые необходимо локализовать и устранить. Обнаружение ошибки и локализация неисправности являются сложной задачей по нескольким причинам: во-первых, из-за большого числа неисправностей; во-вторых, из-за того, что различные неисправности могут проявляться одинаковым образом. Так как отсутствуют модели субъективных неисправностей, указанная задача не формализована. Имеются определенные успехи в области создания методов и средств обнаружения ошибок и локализации физических неисправностей. Эти методы и средства широко используются для проверки работоспособного состояния и диагностики неисправностей дискретных систем при проектировании, производстве и эксплуатации последних.

Субъективные неисправности отличаются от физических тем, что после обнаружения, локализации и коррекции больше не возникают. Однако, как следует из перечня источников ошибок, субъективные неисправности могут быть внесены на этапе разработки спецификации системы, а это означает, что даже после самых тщательных испытаний системы на соответствие ее внешним спецификациям в системе могут находиться субъективные неисправности.

Процесс проектирования - итерационный процесс. Неисправности, обнаруженные на этапе приемосдаточных испытаний, могут привести к коррекции спецификаций, а следовательно, к началу проектирования всей системы. Обнаруживать неисправности необходимо как можно раньше, для этого надо контролировать корректность проекта на каждом этапе разработки.



Проверка правильности проекта

Основные методы контроля правильности проектирования следующие: верификация - формальные методы доказательства корректности проекта; моделирование; тестирование.

Существует много работ по верификации программного обеспечения, микропрограмм, аппаратуры. Однако эти работы носят теоретический характер. На практике пока используют моделирование поведения объекта и тестирование.

Для контроля корректности проекта на каждом этапе проектирования необходимо проводить моделирование на различных уровнях абстрактного представления системы и проверку правильности реализации заданной модели путем тестирования. На этапе формализации требований контроль корректности особо необходим, поскольку многие цели проектирования не формализуются или не могут быть формализованы в принципе. Функциональная спецификация может анализироваться коллективом экспертов или моделироваться и проверяться в опытном порядке для выявления, достигаются ли желаемые цели. После утверждения функциональной спецификации начинается разработка функциональных тестовых программ, предназначенных для установления правильности функционирования системы в соответствии с ее функциональной спецификацией. В идеальном случае разрабатываются тесты, целиком основанные на этой спецификации и дающие возможность проверки любой реализации системы, которая объявляется способной выполнять функции, оговоренные в спецификации. Этот способ - полная противоположность другим, где тесты строятся применительно к конкретным реализациям. Независимая от реализации функциональная проверка обычно заманчива лишь в теоретическом плане, но практического значения не имеет из-за высокой степени общности.

Автоматизация утомительной работы по составлению тестовых программ не только сокращает продолжительность периода конструирования/отладки за счет получения тестовых программ на этапе конструирования (поскольку они могут быть сгенерированы сразу после формирования требований к системе), но и позволяет проектировщику изменять спецификации, не заботясь о переписывании всех тестовых программ заново. Однако на практике разработке тестов часто присваивают более низкий приоритет по сравнению с проектом, поэтому тестовые программы появляются значительно позже его завершения. Но даже если детальные тесты оказываются подготовленными, часто практически нецелесообразно запускать их на имитаторе, так как детальное моделирование требует больших затрат средств на разработку программ и времени на вычисление, в результате большая часть работы по отладке должна откладываться до момента создания прототипа системы.

После обнаружения ошибки должен быть локализован ее источник, чтобы провести коррекцию на соответствующем уровне абстрактного представления системы и в соответствующем месте. Ложное определение источника ошибки или проведение коррекций на другом уровне абстрактного представления системы приводит к тому, что информация о системе на верхних уровнях становится ошибочной и не может быть использована для дальнейшей отладки при производстве и эксплуатации системы. Например, если неисправность внесена в исходный текст программы, написанной на языке ассемблера, а коррекция проведена в объектном коде, то дальнейшая отладка программы ведется в объектном коде; при этом все преимущества написания программы на языке ассемблера сводятся на нет.

<<< Содержание >>>



  Проект: Lab127, 2002.
HTML версия курса создана при финансовой поддержке ПетрГУ
Верстка: Дулепова Юлия